Search Results (10080 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-21605 4 Debian, Lfprojects, Redhat and 1 more 9 Debian Linux, Valkey, Discovery and 6 more 2026-01-22 7.5 High
Redis is an open source, in-memory database that persists on disk. In versions starting at 2.6 and prior to 7.4.3, An unauthenticated client can cause unlimited growth of output buffers, until the server runs out of memory or is killed. By default, the Redis configuration does not limit the output buffer of normal clients (see client-output-buffer-limit). Therefore, the output buffer can grow unlimitedly over time. As a result, the service is exhausted and the memory is unavailable. When password authentication is enabled on the Redis server, but no password is provided, the client can still cause the output buffer to grow from "NOAUTH" responses until the system will run out of memory. This issue has been patched in version 7.4.3. An additional workaround to mitigate this problem without patching the redis-server executable is to block access to prevent unauthenticated users from connecting to Redis. This can be done in different ways. Either using network access control tools like firewalls, iptables, security groups, etc, or enabling TLS and requiring users to authenticate using client side certificates.
CVE-2020-10188 7 Arista, Debian, Fedoraproject and 4 more 10 Eos, Debian Linux, Fedora and 7 more 2026-01-21 9.8 Critical
utility.c in telnetd in netkit telnet through 0.17 allows remote attackers to execute arbitrary code via short writes or urgent data, because of a buffer overflow involving the netclear and nextitem functions.
CVE-2025-39857 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix one NULL pointer dereference in smc_ib_is_sg_need_sync() BUG: kernel NULL pointer dereference, address: 00000000000002ec PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP PTI CPU: 28 UID: 0 PID: 343 Comm: kworker/28:1 Kdump: loaded Tainted: G OE 6.17.0-rc2+ #9 NONE Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Workqueue: smc_hs_wq smc_listen_work [smc] RIP: 0010:smc_ib_is_sg_need_sync+0x9e/0xd0 [smc] ... Call Trace: <TASK> smcr_buf_map_link+0x211/0x2a0 [smc] __smc_buf_create+0x522/0x970 [smc] smc_buf_create+0x3a/0x110 [smc] smc_find_rdma_v2_device_serv+0x18f/0x240 [smc] ? smc_vlan_by_tcpsk+0x7e/0xe0 [smc] smc_listen_find_device+0x1dd/0x2b0 [smc] smc_listen_work+0x30f/0x580 [smc] process_one_work+0x18c/0x340 worker_thread+0x242/0x360 kthread+0xe7/0x220 ret_from_fork+0x13a/0x160 ret_from_fork_asm+0x1a/0x30 </TASK> If the software RoCE device is used, ibdev->dma_device is a null pointer. As a result, the problem occurs. Null pointer detection is added to prevent problems.
CVE-2025-39860 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix use-after-free in l2cap_sock_cleanup_listen() syzbot reported the splat below without a repro. In the splat, a single thread calling bt_accept_dequeue() freed sk and touched it after that. The root cause would be the racy l2cap_sock_cleanup_listen() call added by the cited commit. bt_accept_dequeue() is called under lock_sock() except for l2cap_sock_release(). Two threads could see the same socket during the list iteration in bt_accept_dequeue(): CPU1 CPU2 (close()) ---- ---- sock_hold(sk) sock_hold(sk); lock_sock(sk) <-- block close() sock_put(sk) bt_accept_unlink(sk) sock_put(sk) <-- refcnt by bt_accept_enqueue() release_sock(sk) lock_sock(sk) sock_put(sk) bt_accept_unlink(sk) sock_put(sk) <-- last refcnt bt_accept_unlink(sk) <-- UAF Depending on the timing, the other thread could show up in the "Freed by task" part. Let's call l2cap_sock_cleanup_listen() under lock_sock() in l2cap_sock_release(). [0]: BUG: KASAN: slab-use-after-free in debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline] BUG: KASAN: slab-use-after-free in do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115 Read of size 4 at addr ffff88803b7eb1c4 by task syz.5.3276/16995 CPU: 3 UID: 0 PID: 16995 Comm: syz.5.3276 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 debug_spin_lock_before kernel/locking/spinlock_debug.c:86 [inline] do_raw_spin_lock+0x26f/0x2b0 kernel/locking/spinlock_debug.c:115 spin_lock_bh include/linux/spinlock.h:356 [inline] release_sock+0x21/0x220 net/core/sock.c:3746 bt_accept_dequeue+0x505/0x600 net/bluetooth/af_bluetooth.c:312 l2cap_sock_cleanup_listen+0x5c/0x2a0 net/bluetooth/l2cap_sock.c:1451 l2cap_sock_release+0x5c/0x210 net/bluetooth/l2cap_sock.c:1425 __sock_release+0xb3/0x270 net/socket.c:649 sock_close+0x1c/0x30 net/socket.c:1439 __fput+0x3ff/0xb70 fs/file_table.c:468 task_work_run+0x14d/0x240 kernel/task_work.c:227 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop+0xeb/0x110 kernel/entry/common.c:43 exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline] syscall_exit_to_user_mode_work include/linux/entry-common.h:175 [inline] syscall_exit_to_user_mode include/linux/entry-common.h:210 [inline] do_syscall_64+0x3f6/0x4c0 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f2accf8ebe9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffdb6cb1378 EFLAGS: 00000246 ORIG_RAX: 00000000000001b4 RAX: 0000000000000000 RBX: 00000000000426fb RCX: 00007f2accf8ebe9 RDX: 0000000000000000 RSI: 000000000000001e RDI: 0000000000000003 RBP: 00007f2acd1b7da0 R08: 0000000000000001 R09: 00000012b6cb166f R10: 0000001b30e20000 R11: 0000000000000246 R12: 00007f2acd1b609c R13: 00007f2acd1b6090 R14: ffffffffffffffff R15: 00007ffdb6cb1490 </TASK> Allocated by task 5326: kasan_save_stack+0x33/0x60 mm/kasan/common.c:47 kasan_save_track+0x14/0x30 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:388 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:405 kasan_kmalloc include/linux/kasan.h:260 [inline] __do_kmalloc_node mm/slub.c:4365 [inline] __kmalloc_nopro ---truncated---
CVE-2025-39864 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: fix use-after-free in cmp_bss() Following bss_free() quirk introduced in commit 776b3580178f ("cfg80211: track hidden SSID networks properly"), adjust cfg80211_update_known_bss() to free the last beacon frame elements only if they're not shared via the corresponding 'hidden_beacon_bss' pointer.
CVE-2025-39865 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tee: fix NULL pointer dereference in tee_shm_put tee_shm_put have NULL pointer dereference: __optee_disable_shm_cache --> shm = reg_pair_to_ptr(...);//shm maybe return NULL tee_shm_free(shm); --> tee_shm_put(shm);//crash Add check in tee_shm_put to fix it. panic log: Unable to handle kernel paging request at virtual address 0000000000100cca Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=0000002049d07000 [0000000000100cca] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP CPU: 2 PID: 14442 Comm: systemd-sleep Tainted: P OE ------- ---- 6.6.0-39-generic #38 Source Version: 938b255f6cb8817c95b0dd5c8c2944acfce94b07 Hardware name: greatwall GW-001Y1A-FTH, BIOS Great Wall BIOS V3.0 10/26/2022 pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : tee_shm_put+0x24/0x188 lr : tee_shm_free+0x14/0x28 sp : ffff001f98f9faf0 x29: ffff001f98f9faf0 x28: ffff0020df543cc0 x27: 0000000000000000 x26: ffff001f811344a0 x25: ffff8000818dac00 x24: ffff800082d8d048 x23: ffff001f850fcd18 x22: 0000000000000001 x21: ffff001f98f9fb88 x20: ffff001f83e76218 x19: ffff001f83e761e0 x18: 000000000000ffff x17: 303a30303a303030 x16: 0000000000000000 x15: 0000000000000003 x14: 0000000000000001 x13: 0000000000000000 x12: 0101010101010101 x11: 0000000000000001 x10: 0000000000000001 x9 : ffff800080e08d0c x8 : ffff001f98f9fb88 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : ffff001f83e761e0 x1 : 00000000ffff001f x0 : 0000000000100cca Call trace: tee_shm_put+0x24/0x188 tee_shm_free+0x14/0x28 __optee_disable_shm_cache+0xa8/0x108 optee_shutdown+0x28/0x38 platform_shutdown+0x28/0x40 device_shutdown+0x144/0x2b0 kernel_power_off+0x3c/0x80 hibernate+0x35c/0x388 state_store+0x64/0x80 kobj_attr_store+0x14/0x28 sysfs_kf_write+0x48/0x60 kernfs_fop_write_iter+0x128/0x1c0 vfs_write+0x270/0x370 ksys_write+0x6c/0x100 __arm64_sys_write+0x20/0x30 invoke_syscall+0x4c/0x120 el0_svc_common.constprop.0+0x44/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x24/0x88 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x14c/0x15
CVE-2025-39869 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.1 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: edma: Fix memory allocation size for queue_priority_map Fix a critical memory allocation bug in edma_setup_from_hw() where queue_priority_map was allocated with insufficient memory. The code declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8), but allocated memory using sizeof(s8) instead of the correct size. This caused out-of-bounds memory writes when accessing: queue_priority_map[i][0] = i; queue_priority_map[i][1] = i; The bug manifested as kernel crashes with "Oops - undefined instruction" on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the memory corruption triggered kernel hardening features on Clang. Change the allocation to use sizeof(*queue_priority_map) which automatically gets the correct size for the 2D array structure.
CVE-2025-39870 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Fix double free in idxd_setup_wqs() The clean up in idxd_setup_wqs() has had a couple bugs because the error handling is a bit subtle. It's simpler to just re-write it in a cleaner way. The issues here are: 1) If "idxd->max_wqs" is <= 0 then we call put_device(conf_dev) when "conf_dev" hasn't been initialized. 2) If kzalloc_node() fails then again "conf_dev" is invalid. It's either uninitialized or it points to the "conf_dev" from the previous iteration so it leads to a double free. It's better to free partial loop iterations within the loop and then the unwinding at the end can handle whole loop iterations. I also renamed the labels to describe what the goto does and not where the goto was located.
CVE-2025-39873 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: can: xilinx_can: xcan_write_frame(): fix use-after-free of transmitted SKB can_put_echo_skb() takes ownership of the SKB and it may be freed during or after the call. However, xilinx_can xcan_write_frame() keeps using SKB after the call. Fix that by only calling can_put_echo_skb() after the code is done touching the SKB. The tx_lock is held for the entire xcan_write_frame() execution and also on the can_get_echo_skb() side so the order of operations does not matter. An earlier fix commit 3d3c817c3a40 ("can: xilinx_can: Fix usage of skb memory") did not move the can_put_echo_skb() call far enough. [mkl: add "commit" in front of sha1 in patch description] [mkl: fix indention]
CVE-2025-39876 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fec: Fix possible NPD in fec_enet_phy_reset_after_clk_enable() The function of_phy_find_device may return NULL, so we need to take care before dereferencing phy_dev.
CVE-2025-39877 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: fix use-after-free in state_show() state_show() reads kdamond->damon_ctx without holding damon_sysfs_lock. This allows a use-after-free race: CPU 0 CPU 1 ----- ----- state_show() damon_sysfs_turn_damon_on() ctx = kdamond->damon_ctx; mutex_lock(&damon_sysfs_lock); damon_destroy_ctx(kdamond->damon_ctx); kdamond->damon_ctx = NULL; mutex_unlock(&damon_sysfs_lock); damon_is_running(ctx); /* ctx is freed */ mutex_lock(&ctx->kdamond_lock); /* UAF */ (The race can also occur with damon_sysfs_kdamonds_rm_dirs() and damon_sysfs_kdamond_release(), which free or replace the context under damon_sysfs_lock.) Fix by taking damon_sysfs_lock before dereferencing the context, mirroring the locking used in pid_show(). The bug has existed since state_show() first accessed kdamond->damon_ctx.
CVE-2025-39880 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: libceph: fix invalid accesses to ceph_connection_v1_info There is a place where generic code in messenger.c is reading and another place where it is writing to con->v1 union member without checking that the union member is active (i.e. msgr1 is in use). On 64-bit systems, con->v1.auth_retry overlaps with con->v2.out_iter, so such a read is almost guaranteed to return a bogus value instead of 0 when msgr2 is in use. This ends up being fairly benign because the side effect is just the invalidation of the authorizer and successive fetching of new tickets. con->v1.connect_seq overlaps with con->v2.conn_bufs and the fact that it's being written to can cause more serious consequences, but luckily it's not something that happens often.
CVE-2025-39923 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom: bam_dma: Fix DT error handling for num-channels/ees When we don't have a clock specified in the device tree, we have no way to ensure the BAM is on. This is often the case for remotely-controlled or remotely-powered BAM instances. In this case, we need to read num-channels from the DT to have all the necessary information to complete probing. However, at the moment invalid device trees without clock and without num-channels still continue probing, because the error handling is missing return statements. The driver will then later try to read the number of channels from the registers. This is unsafe, because it relies on boot firmware and lucky timing to succeed. Unfortunately, the lack of proper error handling here has been abused for several Qualcomm SoCs upstream, causing early boot crashes in several situations [1, 2]. Avoid these early crashes by erroring out when any of the required DT properties are missing. Note that this will break some of the existing DTs upstream (mainly BAM instances related to the crypto engine). However, clearly these DTs have never been tested properly, since the error in the kernel log was just ignored. It's safer to disable the crypto engine for these broken DTBs. [1]: https://lore.kernel.org/r/CY01EKQVWE36.B9X5TDXAREPF@fairphone.com/ [2]: https://lore.kernel.org/r/20230626145959.646747-1-krzysztof.kozlowski@linaro.org/
CVE-2025-39839 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.1 High
In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix OOB read/write in network-coding decode batadv_nc_skb_decode_packet() trusts coded_len and checks only against skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing payload headroom, and the source skb length is not verified, allowing an out-of-bounds read and a small out-of-bounds write. Validate that coded_len fits within the payload area of both destination and source sk_buffs before XORing.
CVE-2025-39841 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix buffer free/clear order in deferred receive path Fix a use-after-free window by correcting the buffer release sequence in the deferred receive path. The code freed the RQ buffer first and only then cleared the context pointer under the lock. Concurrent paths (e.g., ABTS and the repost path) also inspect and release the same pointer under the lock, so the old order could lead to double-free/UAF. Note that the repost path already uses the correct pattern: detach the pointer under the lock, then free it after dropping the lock. The deferred path should do the same.
CVE-2025-39842 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: prevent release journal inode after journal shutdown Before calling ocfs2_delete_osb(), ocfs2_journal_shutdown() has already been executed in ocfs2_dismount_volume(), so osb->journal must be NULL. Therefore, the following calltrace will inevitably fail when it reaches jbd2_journal_release_jbd_inode(). ocfs2_dismount_volume()-> ocfs2_delete_osb()-> ocfs2_free_slot_info()-> __ocfs2_free_slot_info()-> evict()-> ocfs2_evict_inode()-> ocfs2_clear_inode()-> jbd2_journal_release_jbd_inode(osb->journal->j_journal, Adding osb->journal checks will prevent null-ptr-deref during the above execution path.
CVE-2025-39843 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: slub: avoid wake up kswapd in set_track_prepare set_track_prepare() can incur lock recursion. The issue is that it is called from hrtimer_start_range_ns holding the per_cpu(hrtimer_bases)[n].lock, but when enabled CONFIG_DEBUG_OBJECTS_TIMERS, may wake up kswapd in set_track_prepare, and try to hold the per_cpu(hrtimer_bases)[n].lock. Avoid deadlock caused by implicitly waking up kswapd by passing in allocation flags, which do not contain __GFP_KSWAPD_RECLAIM in the debug_objects_fill_pool() case. Inside stack depot they are processed by gfp_nested_mask(). Since ___slab_alloc() has preemption disabled, we mask out __GFP_DIRECT_RECLAIM from the flags there. The oops looks something like: BUG: spinlock recursion on CPU#3, swapper/3/0 lock: 0xffffff8a4bf29c80, .magic: dead4ead, .owner: swapper/3/0, .owner_cpu: 3 Hardware name: Qualcomm Technologies, Inc. Popsicle based on SM8850 (DT) Call trace: spin_bug+0x0 _raw_spin_lock_irqsave+0x80 hrtimer_try_to_cancel+0x94 task_contending+0x10c enqueue_dl_entity+0x2a4 dl_server_start+0x74 enqueue_task_fair+0x568 enqueue_task+0xac do_activate_task+0x14c ttwu_do_activate+0xcc try_to_wake_up+0x6c8 default_wake_function+0x20 autoremove_wake_function+0x1c __wake_up+0xac wakeup_kswapd+0x19c wake_all_kswapds+0x78 __alloc_pages_slowpath+0x1ac __alloc_pages_noprof+0x298 stack_depot_save_flags+0x6b0 stack_depot_save+0x14 set_track_prepare+0x5c ___slab_alloc+0xccc __kmalloc_cache_noprof+0x470 __set_page_owner+0x2bc post_alloc_hook[jt]+0x1b8 prep_new_page+0x28 get_page_from_freelist+0x1edc __alloc_pages_noprof+0x13c alloc_slab_page+0x244 allocate_slab+0x7c ___slab_alloc+0x8e8 kmem_cache_alloc_noprof+0x450 debug_objects_fill_pool+0x22c debug_object_activate+0x40 enqueue_hrtimer[jt]+0xdc hrtimer_start_range_ns+0x5f8 ...
CVE-2025-39844 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: move page table sync declarations to linux/pgtable.h During our internal testing, we started observing intermittent boot failures when the machine uses 4-level paging and has a large amount of persistent memory: BUG: unable to handle page fault for address: ffffe70000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP NOPTI RIP: 0010:__init_single_page+0x9/0x6d Call Trace: <TASK> __init_zone_device_page+0x17/0x5d memmap_init_zone_device+0x154/0x1bb pagemap_range+0x2e0/0x40f memremap_pages+0x10b/0x2f0 devm_memremap_pages+0x1e/0x60 dev_dax_probe+0xce/0x2ec [device_dax] dax_bus_probe+0x6d/0xc9 [... snip ...] </TASK> It turns out that the kernel panics while initializing vmemmap (struct page array) when the vmemmap region spans two PGD entries, because the new PGD entry is only installed in init_mm.pgd, but not in the page tables of other tasks. And looking at __populate_section_memmap(): if (vmemmap_can_optimize(altmap, pgmap)) // does not sync top level page tables r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); else // sync top level page tables in x86 r = vmemmap_populate(start, end, nid, altmap); In the normal path, vmemmap_populate() in arch/x86/mm/init_64.c synchronizes the top level page table (See commit 9b861528a801 ("x86-64, mem: Update all PGDs for direct mapping and vmemmap mapping changes")) so that all tasks in the system can see the new vmemmap area. However, when vmemmap_can_optimize() returns true, the optimized path skips synchronization of top-level page tables. This is because vmemmap_populate_compound_pages() is implemented in core MM code, which does not handle synchronization of the top-level page tables. Instead, the core MM has historically relied on each architecture to perform this synchronization manually. We're not the first party to encounter a crash caused by not-sync'd top level page tables: earlier this year, Gwan-gyeong Mun attempted to address the issue [1] [2] after hitting a kernel panic when x86 code accessed the vmemmap area before the corresponding top-level entries were synced. At that time, the issue was believed to be triggered only when struct page was enlarged for debugging purposes, and the patch did not get further updates. It turns out that current approach of relying on each arch to handle the page table sync manually is fragile because 1) it's easy to forget to sync the top level page table, and 2) it's also easy to overlook that the kernel should not access the vmemmap and direct mapping areas before the sync. # The solution: Make page table sync more code robust and harder to miss To address this, Dave Hansen suggested [3] [4] introducing {pgd,p4d}_populate_kernel() for updating kernel portion of the page tables and allow each architecture to explicitly perform synchronization when installing top-level entries. With this approach, we no longer need to worry about missing the sync step, reducing the risk of future regressions. The new interface reuses existing ARCH_PAGE_TABLE_SYNC_MASK, PGTBL_P*D_MODIFIED and arch_sync_kernel_mappings() facility used by vmalloc and ioremap to synchronize page tables. pgd_populate_kernel() looks like this: static inline void pgd_populate_kernel(unsigned long addr, pgd_t *pgd, p4d_t *p4d) { pgd_populate(&init_mm, pgd, p4d); if (ARCH_PAGE_TABLE_SYNC_MASK & PGTBL_PGD_MODIFIED) arch_sync_kernel_mappings(addr, addr); } It is worth noting that vmalloc() and apply_to_range() carefully synchronizes page tables by calling p*d_alloc_track() and arch_sync_kernel_mappings(), and thus they are not affected by ---truncated---
CVE-2025-39845 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm/64: define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() Define ARCH_PAGE_TABLE_SYNC_MASK and arch_sync_kernel_mappings() to ensure page tables are properly synchronized when calling p*d_populate_kernel(). For 5-level paging, synchronization is performed via pgd_populate_kernel(). In 4-level paging, pgd_populate() is a no-op, so synchronization is instead performed at the P4D level via p4d_populate_kernel(). This fixes intermittent boot failures on systems using 4-level paging and a large amount of persistent memory: BUG: unable to handle page fault for address: ffffe70000000034 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] SMP NOPTI RIP: 0010:__init_single_page+0x9/0x6d Call Trace: <TASK> __init_zone_device_page+0x17/0x5d memmap_init_zone_device+0x154/0x1bb pagemap_range+0x2e0/0x40f memremap_pages+0x10b/0x2f0 devm_memremap_pages+0x1e/0x60 dev_dax_probe+0xce/0x2ec [device_dax] dax_bus_probe+0x6d/0xc9 [... snip ...] </TASK> It also fixes a crash in vmemmap_set_pmd() caused by accessing vmemmap before sync_global_pgds() [1]: BUG: unable to handle page fault for address: ffffeb3ff1200000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: Oops: 0002 [#1] PREEMPT SMP NOPTI Tainted: [W]=WARN RIP: 0010:vmemmap_set_pmd+0xff/0x230 <TASK> vmemmap_populate_hugepages+0x176/0x180 vmemmap_populate+0x34/0x80 __populate_section_memmap+0x41/0x90 sparse_add_section+0x121/0x3e0 __add_pages+0xba/0x150 add_pages+0x1d/0x70 memremap_pages+0x3dc/0x810 devm_memremap_pages+0x1c/0x60 xe_devm_add+0x8b/0x100 [xe] xe_tile_init_noalloc+0x6a/0x70 [xe] xe_device_probe+0x48c/0x740 [xe] [... snip ...]
CVE-2025-39846 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pcmcia: Fix a NULL pointer dereference in __iodyn_find_io_region() In __iodyn_find_io_region(), pcmcia_make_resource() is assigned to res and used in pci_bus_alloc_resource(). There is a dereference of res in pci_bus_alloc_resource(), which could lead to a NULL pointer dereference on failure of pcmcia_make_resource(). Fix this bug by adding a check of res.