| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27143. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27142. |
| Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27140. |
| EVerest is an EV charging software stack. Prior to version 2025.12.0, `is_message_crc_correct` in the DZG_GSH01 powermeter SLIP parser reads `vec[vec.size()-1]` and `vec[vec.size()-2]` without checking that at least two bytes are present. Malformed SLIP frames on the serial link can reach `is_message_crc_correct` with `vec.size() < 2` (only via the multi-message path), causing an out-of-bounds read before CRC verification and `pop_back` underflow. Therefore, an attacker controlling the serial input can reliably crash the process. Version 2025.12.0 fixes the issue. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From 1.6.51 to 1.6.53, there is a heap buffer over-read in the libpng simplified API function png_image_finish_read when processing interlaced 16-bit PNGs with 8-bit output format and non-minimal row stride. This is a regression introduced by the fix for CVE-2025-65018. This vulnerability is fixed in 1.6.54. |
| LIBPNG is a reference library for use in applications that read, create, and manipulate PNG (Portable Network Graphics) raster image files. From 1.6.26 to 1.6.53, there is an integer truncation in the libpng simplified write API functions png_write_image_16bit and png_write_image_8bit causes heap buffer over-read when the caller provides a negative row stride (for bottom-up image layouts) or a stride exceeding 65535 bytes. The bug was introduced in libpng 1.6.26 (October 2016) by casts added to silence compiler warnings on 16-bit systems. This vulnerability is fixed in 1.6.54. |
| A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior. |
| Out of bounds memory access in V8 in Google Chrome prior to 144.0.7559.59 allowed a remote attacker to potentially exploit object corruption via a crafted HTML page. (Chromium security severity: High) |
| Out-of-bounds read in Windows NDIS allows an authorized attacker to disclose information with a physical attack. |
| Out-of-bounds read in Microsoft Office Excel allows an unauthorized attacker to execute code locally. |
| Out-of-bounds read in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Out-of-bounds read in Capability Access Management Service (camsvc) allows an unauthorized attacker to disclose information locally. |
| Out-of-bounds read in Capability Access Management Service (camsvc) allows an authorized attacker to disclose information locally. |
| Out-of-bounds read in Windows TPM allows an authorized attacker to disclose information locally. |
| Out-of-bounds read in Windows Internet Connection Sharing (ICS) allows an unauthorized attacker to disclose information with a physical attack. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: edma: Fix memory allocation size for queue_priority_map
Fix a critical memory allocation bug in edma_setup_from_hw() where
queue_priority_map was allocated with insufficient memory. The code
declared queue_priority_map as s8 (*)[2] (pointer to array of 2 s8),
but allocated memory using sizeof(s8) instead of the correct size.
This caused out-of-bounds memory writes when accessing:
queue_priority_map[i][0] = i;
queue_priority_map[i][1] = i;
The bug manifested as kernel crashes with "Oops - undefined instruction"
on ARM platforms (BeagleBoard-X15) during EDMA driver probe, as the
memory corruption triggered kernel hardening features on Clang.
Change the allocation to use sizeof(*queue_priority_map) which
automatically gets the correct size for the 2D array structure. |
| In the Eclipse OMR compiler component, since release 0.7.0, an optimization enabled for Eclipse OpenJ9 consumers of OMR on Z processors incorrectly handles NUL (0x00) characters during the Latin-compatible charset (UTF-8, ISO8859-1, ASCII, etc) to IBM-1047/037 translation sequence. This can cause the output byte array to be truncated, discarding the first NUL byte and all subsequent characters, and thereby exposing a possible buffer over-read problem. This issue is fixed in Eclipse OMR version 0.8.0. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, a heap out-of-bounds read occurs in the smartcard SetAttrib path when cbAttrLen does not match the actual NDR buffer length. This vulnerability is fixed in 3.20.1. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, global-buffer-overflow was observed in FreeRDP's Base64 decoding path. The root cause appears to be implementation-defined char signedness: on Arm/AArch64 builds, plain char is treated as unsigned, so the guard c <= 0 can be optimized into a simple c != 0 check. As a result, non-ASCII bytes (e.g., 0x80-0xFF) may bypass the intended range restriction and be used as an index into a global lookup table, causing out-of-bounds access. This vulnerability is fixed in 3.20.1. |
| FreeRDP is a free implementation of the Remote Desktop Protocol. Prior to 3.20.1, the URBDRC client does not perform bounds checking on server‑supplied MSUSB_INTERFACE_DESCRIPTOR values and uses them as indices in libusb_udev_complete_msconfig_setup, causing an out‑of‑bounds read. This vulnerability is fixed in 3.20.1. |