| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper buffer restrictions in Intel(R) Optimization for TensorFlow before version 2.13.0 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| OpenLDAP Lightning Memory-Mapped Database (LMDB) versions up to and including 0.9.14, prior to commit 8e1fda8, contain a heap buffer underflow in the readline() function of mdb_load. When processing malformed input containing an embedded NUL byte, an unsigned offset calculation can underflow and cause an out-of-bounds read of one byte before the allocated heap buffer. This can cause mdb_load to crash, leading to a limited denial-of-service condition. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: ensure data length is within supported range
Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer'
to ensure the data length isn't within the supported range. In
particular a data length of 0 is not supported by the hardware and
causes unintended or destructive behaviour.
This limitation becomes obvious when looking at the register
documentation [1]. 4 bits are reserved for DATA_WIDTH and the value
of these 4 bits is used as N + 1, allowing a data length range of
1 <= len <= 16.
Affected by this is the SMBus Quick Operation which works with a data
length of 0. Passing 0 as the length causes an underflow of the value
due to:
(len - 1) & 0xf
and effectively specifying a transfer length of 16 via the registers.
This causes a 16-byte write operation instead of a Quick Write. For
example, on SFP modules without write-protected EEPROM this soft-bricks
them by overwriting some initial bytes.
For completeness, also add a quirk for the zero length.
[1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 |
| In the Linux kernel, the following vulnerability has been resolved:
ixgbe: fix incorrect map used in eee linkmode
incorrectly used ixgbe_lp_map in loops intended to populate the
supported and advertised EEE linkmode bitmaps based on ixgbe_ls_map.
This results in incorrect bit setting and potential out-of-bounds
access, since ixgbe_lp_map and ixgbe_ls_map have different sizes
and purposes.
ixgbe_lp_map[i] -> ixgbe_ls_map[i]
Use ixgbe_ls_map for supported and advertised linkmodes, and keep
ixgbe_lp_map usage only for link partner (lp_advertised) mapping. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix possible underflow for displays with large vblank
[Why]
Underflow observed when using a display with a large vblank region
and low refresh rate
[How]
Simplify calculation of vblank_nom
Increase value for VBlankNomDefaultUS to 800us |
| In the Linux kernel, the following vulnerability has been resolved:
cacheinfo: Fix shared_cpu_map to handle shared caches at different levels
The cacheinfo sets up the shared_cpu_map by checking whether the caches
with the same index are shared between CPUs. However, this will trigger
slab-out-of-bounds access if the CPUs do not have the same cache hierarchy.
Another problem is the mismatched shared_cpu_map when the shared cache does
not have the same index between CPUs.
CPU0 I D L3
index 0 1 2 x
^ ^ ^ ^
index 0 1 2 3
CPU1 I D L2 L3
This patch checks each cache is shared with all caches on other CPUs. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe()
The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM.
In the for loop, 'i' is used as the index for array 'priv->ports[]'
with a check (i > INNO_PHY_PORT_NUM) which indicates that
INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop.
This > comparison needs to be changed to >=, otherwise it potentially leads
to an out of bounds write on the next iteration through the loop |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Fix OOB and integer underflow when rx packets
Make sure mwifiex_process_mgmt_packet,
mwifiex_process_sta_rx_packet and mwifiex_process_uap_rx_packet,
mwifiex_uap_queue_bridged_pkt and mwifiex_process_rx_packet
not out-of-bounds access the skb->data buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: jfs_dmap: Validate db_l2nbperpage while mounting
In jfs_dmap.c at line 381, BLKTODMAP is used to get a logical block
number inside dbFree(). db_l2nbperpage, which is the log2 number of
blocks per page, is passed as an argument to BLKTODMAP which uses it
for shifting.
Syzbot reported a shift out-of-bounds crash because db_l2nbperpage is
too big. This happens because the large value is set without any
validation in dbMount() at line 181.
Thus, make sure that db_l2nbperpage is correct while mounting.
Max number of blocks per page = Page size / Min block size
=> log2(Max num_block per page) = log2(Page size / Min block size)
= log2(Page size) - log2(Min block size)
=> Max db_l2nbperpage = L2PSIZE - L2MINBLOCKSIZE |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: slab-out-of-bounds read in brcmf_get_assoc_ies()
Fix a slab-out-of-bounds read that occurs in kmemdup() called from
brcmf_get_assoc_ies().
The bug could occur when assoc_info->req_len, data from a URB provided
by a USB device, is bigger than the size of buffer which is defined as
WL_EXTRA_BUF_MAX.
Add the size check for req_len/resp_len of assoc_info.
Found by a modified version of syzkaller.
[ 46.592467][ T7] ==================================================================
[ 46.594687][ T7] BUG: KASAN: slab-out-of-bounds in kmemdup+0x3e/0x50
[ 46.596572][ T7] Read of size 3014656 at addr ffff888019442000 by task kworker/0:1/7
[ 46.598575][ T7]
[ 46.599157][ T7] CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #145
[ 46.601333][ T7] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[ 46.604360][ T7] Workqueue: events brcmf_fweh_event_worker
[ 46.605943][ T7] Call Trace:
[ 46.606584][ T7] dump_stack_lvl+0x8e/0xd1
[ 46.607446][ T7] print_address_description.constprop.0.cold+0x93/0x334
[ 46.608610][ T7] ? kmemdup+0x3e/0x50
[ 46.609341][ T7] kasan_report.cold+0x79/0xd5
[ 46.610151][ T7] ? kmemdup+0x3e/0x50
[ 46.610796][ T7] kasan_check_range+0x14e/0x1b0
[ 46.611691][ T7] memcpy+0x20/0x60
[ 46.612323][ T7] kmemdup+0x3e/0x50
[ 46.612987][ T7] brcmf_get_assoc_ies+0x967/0xf60
[ 46.613904][ T7] ? brcmf_notify_vif_event+0x3d0/0x3d0
[ 46.614831][ T7] ? lock_chain_count+0x20/0x20
[ 46.615683][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.616552][ T7] ? lock_chain_count+0x20/0x20
[ 46.617409][ T7] ? mark_lock.part.0+0xfc/0x2770
[ 46.618244][ T7] ? lock_chain_count+0x20/0x20
[ 46.619024][ T7] brcmf_bss_connect_done.constprop.0+0x241/0x2e0
[ 46.620019][ T7] ? brcmf_parse_configure_security.isra.0+0x2a0/0x2a0
[ 46.620818][ T7] ? __lock_acquire+0x181f/0x5790
[ 46.621462][ T7] brcmf_notify_connect_status+0x448/0x1950
[ 46.622134][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.622736][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.623390][ T7] ? find_held_lock+0x2d/0x110
[ 46.623962][ T7] ? brcmf_fweh_event_worker+0x19f/0xc60
[ 46.624603][ T7] ? mark_held_locks+0x9f/0xe0
[ 46.625145][ T7] ? lockdep_hardirqs_on_prepare+0x3e0/0x3e0
[ 46.625871][ T7] ? brcmf_cfg80211_join_ibss+0x7b0/0x7b0
[ 46.626545][ T7] brcmf_fweh_call_event_handler.isra.0+0x90/0x100
[ 46.627338][ T7] brcmf_fweh_event_worker+0x557/0xc60
[ 46.627962][ T7] ? brcmf_fweh_call_event_handler.isra.0+0x100/0x100
[ 46.628736][ T7] ? rcu_read_lock_sched_held+0xa1/0xd0
[ 46.629396][ T7] ? rcu_read_lock_bh_held+0xb0/0xb0
[ 46.629970][ T7] ? lockdep_hardirqs_on_prepare+0x273/0x3e0
[ 46.630649][ T7] process_one_work+0x92b/0x1460
[ 46.631205][ T7] ? pwq_dec_nr_in_flight+0x330/0x330
[ 46.631821][ T7] ? rwlock_bug.part.0+0x90/0x90
[ 46.632347][ T7] worker_thread+0x95/0xe00
[ 46.632832][ T7] ? __kthread_parkme+0x115/0x1e0
[ 46.633393][ T7] ? process_one_work+0x1460/0x1460
[ 46.633957][ T7] kthread+0x3a1/0x480
[ 46.634369][ T7] ? set_kthread_struct+0x120/0x120
[ 46.634933][ T7] ret_from_fork+0x1f/0x30
[ 46.635431][ T7]
[ 46.635687][ T7] Allocated by task 7:
[ 46.636151][ T7] kasan_save_stack+0x1b/0x40
[ 46.636628][ T7] __kasan_kmalloc+0x7c/0x90
[ 46.637108][ T7] kmem_cache_alloc_trace+0x19e/0x330
[ 46.637696][ T7] brcmf_cfg80211_attach+0x4a0/0x4040
[ 46.638275][ T7] brcmf_attach+0x389/0xd40
[ 46.638739][ T7] brcmf_usb_probe+0x12de/0x1690
[ 46.639279][ T7] usb_probe_interface+0x2aa/0x760
[ 46.639820][ T7] really_probe+0x205/0xb70
[ 46.640342][ T7] __driver_probe_device+0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
| Substance3D - Designer versions 15.0.3 and earlier are affected by an Out-of-bounds Read vulnerability that could lead to memory exposure. An attacker could leverage this vulnerability to disclose sensitive information stored in memory. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| Dell PowerEdge Platform version(s) 14G AMD BIOS v1.25.0 and prior, contain(s) an Access of Memory Location After End of Buffer vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information exposure. |
| A buffer overflow vulnerability in the URL parser of the zhttpd web server in Zyxel VMG8825-T50K firmware versions prior to V5.50(ABOM.5)C0 could allow an unauthenticated attacker to cause denial-of-service (DoS) conditions and potentially execute arbitrary code by sending a specially crafted HTTP request. |
| Vivotek IP7137 camera with firmware version 0200a by default dos not require to provide any password when logging in as an administrator. While it is possible to set up such a password, a user is not informed about such a need.
The vendor has not replied to the CNA. Possibly all firmware versions are affected. Since the product has met End-Of-Life phase, a fix is not expected to be released. |
| The issue was addressed with improved memory handling. This issue is fixed in tvOS 26.2, Safari 26.2, watchOS 26.2, visionOS 26.2, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| Out-of-bounds Read vulnerability in Apache NimBLE HCI H4 driver. Specially crafted HCI event could lead to invalid memory read in H4 driver.
This issue affects Apache NimBLE: through 1.8.
This issue requires a broken or bogus Bluetooth controller and thus severity is considered low.
Users are recommended to upgrade to version 1.9, which fixes the issue. |
| Dependency on Vulnerable Third-Party Component vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows DOM-Based XSS.This issue affects DX NetOps Spectrum: 24.3.9 and earlier. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport
[Why]
Potential out of bounds access in dml2_calculate_rq_and_dlg_params()
because the value of out_lowest_state_idx used as an index for FCLKChangeSupport
array can be greater than 1.
[How]
Currently dml2 core specifies identical values for all FCLKChangeSupport
elements. Always use index 0 in the condition to avoid out of bounds access. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to subvert GPU HW to write to arbitrary physical memory pages.
Under certain circumstances this exploit could be used to corrupt data pages not allocated by the GPU driver but memory pages in use by the kernel and drivers running on the platform altering their behaviour.
This attack can lead the GPU to perform write operations on restricted internal GPU buffers that can lead to a second order affect of corrupted arbitrary physical memory. |