| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| YouTube Video Grabber, now referred to as YouTube Downloader, 1.9.9.1 contains a buffer overflow vulnerability that allows attackers to execute arbitrary code by overwriting the Structured Exception Handler. Attackers can craft a malicious payload of 712 bytes with SEH manipulation to trigger a bind shell connection on a specified local port. |
| 10-Strike Network Inventory Explorer Pro 9.31 contains a buffer overflow vulnerability in the text file import functionality that allows remote code execution. Attackers can craft a malicious text file with carefully constructed payload to trigger a reverse shell and execute arbitrary code on the target system. |
| Cmder Console Emulator 1.3.18 contains a buffer overflow vulnerability that allows attackers to trigger a denial of service condition through a maliciously crafted .cmd file. Attackers can create a specially constructed .cmd file with repeated characters to overwhelm the console emulator's buffer and crash the application. |
| Kingdia CD Extractor 3.0.2 contains a buffer overflow vulnerability in the registration name field that allows attackers to execute arbitrary code. Attackers can craft a malicious payload exceeding 256 bytes to overwrite Structured Exception Handler and gain remote code execution through a bind shell. |
| An issue was discovered in Dolby UDC 4.5 through 4.13. A crash of the DD+ decoder process can occur when a malformed DD+ bitstream is processed. When Evolution data is processed by evo_priv.c from the DD+ bitstream, the decoder writes that data into a buffer. The length calculation for a write can overflow due to an integer wraparound. This can lead to the allocated buffer being too small, and the out-of-bounds check of the subsequent write to be ineffective, leading to an out-of-bounds write. |
| Out-of-bounds write vulnerabilities in print processing of Generic Plus PCL6 Printer Driver / Generic Plus UFR II Printer Driver / Generic Plus LIPS4 Printer Driver / Generic Plus LIPSLX Printer Driver / Generic Plus PS Printer Driver / UFRII LT Printer Driver / CARPS2 Printer Driver / Generic FAX Driver |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to version 1.4.3, the Crypto_Config_Add_Gvcid_Managed_Parameters function only checks whether gvcid_counter > GVCID_MAN_PARAM_SIZE. As a result, it allows up to the 251st entry, which causes a write past the end of the array, overwriting gvcid_counter located immediately after gvcid_managed_parameters_array[250]. This leads to an out-of-bounds write, and the overwritten gvcid_counter may become an arbitrary value, potentially affecting the parameter lookup/registration logic that relies on it. This issue has been patched in version 1.4.3. |
| Stack-based Buffer Overflow vulnerability in Sharp Display Solutions projectors allows a attacker may execute arbitrary commands and programs. |
| Stack-based Buffer Overflow vulnerability in Sharp Display Solutions projectors allows a attacker may execute arbitrary commands and programs. |
| Certain HP LaserJet Pro, HP LaserJet Enterprise, and HP LaserJet Managed Printers may potentially be vulnerable to Remote Code Execution and Elevation of Privilege when processing a PostScript print job. |
| A stack-based buffer overflow vulnerability in Fortinet FortiOS 7.6.0 through 7.6.3, FortiOS 7.4.0 through 7.4.8, FortiOS 7.2 all versions, FortiOS 7.0 all versions, FortiOS 6.4 all versions, FortiOS 6.2 all versions, FortiOS 6.0 all versions, FortiSASE 25.3.b allows attacker to execute unauthorized code or commands via specially crafted packets |
| zlib versions up to and including 1.3.1.2 include a global buffer overflow in the untgz utility located under contrib/untgz. The vulnerability is limited to the standalone demonstration utility and does not affect the core zlib compression library. The flaw occurs when a user executes the untgz command with an excessively long archive name supplied via the command line, leading to an out-of-bounds write in a fixed-size global buffer. |
| A stack-based buffer overflow vulnerability [CWE-121] vulnerability in Fortinet FortiCamera 2.1.0 through 2.1.3, FortiCamera 2.0 all versions, FortiCamera 1.1 all versions, FortiMail 7.6.0 through 7.6.2, FortiMail 7.4.0 through 7.4.4, FortiMail 7.2.0 through 7.2.7, FortiMail 7.0.0 through 7.0.8, FortiNDR 7.6.0, FortiNDR 7.4.0 through 7.4.7, FortiNDR 7.2.0 through 7.2.4, FortiNDR 7.0.0 through 7.0.6, FortiRecorder 7.2.0 through 7.2.3, FortiRecorder 7.0.0 through 7.0.5, FortiRecorder 6.4.0 through 6.4.5, FortiVoice 7.2.0, FortiVoice 7.0.0 through 7.0.6, FortiVoice 6.4.0 through 6.4.10 allows a remote unauthenticated attacker to execute arbitrary code or commands via sending HTTP requests with specially crafted hash cookie. |
| TinyOS versions up to and including 2.1.2 contain a global buffer overflow vulnerability in the printfUART formatted output implementation used within the ZigBee / IEEE 802.15.4 networking stack. The implementation formats output into a fixed-size global buffer and concatenates strings for %s format specifiers using strcat() without verifying remaining buffer capacity. When printfUART is invoked with a caller-controlled string longer than the available space, the unbounded sprintf/strcat sequence writes past the end of debugbuf, resulting in global memory corruption. This can cause denial of service, unintended behavior, or information disclosure via corrupted adjacent global state or UART output. |
| The drivers in the tool packages use RTL_QUERY_REGISTRY_DIRECT flag to read a registry value to which an untrusted user-mode application may be able to cause a buffer overflow. |
| The drivers in the tool packages use RTL_QUERY_REGISTRY_DIRECT flag to read a registry value to which an untrusted user-mode application may be able to cause a buffer overflow. |
| The drivers in the tool packages use RTL_QUERY_REGISTRY_DIRECT flag to read a registry value to which an untrusted user-mode application may be able to cause a buffer overflow. |
| The drivers in the tool packages use RTL_QUERY_REGISTRY_DIRECT flag to read a registry value to which an untrusted user-mode application may be able to cause a buffer overflow. |
| [This CNA information record relates to multiple CVEs; the
text explains which aspects/vulnerabilities correspond to which CVE.]
Some Viridian hypercalls can specify a mask of vCPU IDs as an input, in
one of three formats. Xen has boundary checking bugs with all three
formats, which can cause out-of-bounds reads and writes while processing
the inputs.
* CVE-2025-58147. Hypercalls using the HV_VP_SET Sparse format can
cause vpmask_set() to write out of bounds when converting the bitmap
to Xen's format.
* CVE-2025-58148. Hypercalls using any input format can cause
send_ipi() to read d->vcpu[] out-of-bounds, and operate on a wild
vCPU pointer. |
| libcoap versions up to and including 4.3.5, prior to commit 30db3ea, contain a stack-based buffer overflow in address resolution when attacker-controlled hostname data is copied into a fixed 256-byte stack buffer without proper bounds checking. A remote attacker can trigger a crash and potentially achieve remote code execution depending on compiler options and runtime memory protections. Exploitation requires the proxy logic to be enabled (i.e., the proxy request handling code path in an application using libcoap). |