| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause memory corruption by identifying and accessing the shared memory region used by the Python backend. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Triton Inference Server for Windows and Linux contains a vulnerability where an attacker could cause a denial of service by loading a misconfigured model. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Container Toolkit for Linux contains a Time-of-Check Time-of-Use (TOCTOU) vulnerability when used with default configuration, where a crafted container image could gain access to the host file system. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA nvJPEG contains a vulnerability in jpeg encoding where a user may cause an out-of-bounds read by providing a maliciously crafted input image with dimensions that cause integer overflows in array index calculations. A successful exploit of this vulnerability may lead to denial of service. |
| NVIDIA nvJPEG library contains a vulnerability where an attacker can cause an out-of-bounds read by means of a specially crafted JPEG file. A successful exploit of this vulnerability might lead to information disclosure or denial of service. |
| NVIDIA NeMo Framework contains a vulnerability where a user could cause a deserialization of untrusted data by remote code execution. A successful exploit of this vulnerability might lead to code execution and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause an improper limitation of a pathname to a restricted directory by an arbitrary file write. A successful exploit of this vulnerability might lead to code execution and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where a user could cause an improper control of generation of code by remote code execution. A successful exploit of this vulnerability might lead to code execution and data tampering. |
| NVIDIA NeMo library for all platforms contains a vulnerability in the model loading component, where an attacker could cause code injection by loading .nemo files with maliciously crafted metadata. A successful exploit of this vulnerability may lead to remote code execution and data tampering. |
| NVIDIA NeMo Framework for all platforms contains a vulnerability where a user could cause a deserialization of untrusted data by remote code execution. A successful exploit of this vulnerability might lead to code execution and data tampering. |
| NVIDIA Nemo Framework contains a vulnerability where a user could cause a relative path traversal issue by arbitrary file write. A successful exploit of this vulnerability may lead to code execution and data tampering. |
| NVIDIA Triton Inference Server contains a vulnerability in the model loading API, where a user could cause an integer overflow or wraparound error by loading a model with an extra-large file size that overflows an internal variable. A successful exploit of this vulnerability might lead to denial of service. |
| NVIDIA Megatron-LM for all platforms contains a vulnerability in the tools component, where an attacker may exploit a code injection issue. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Megatron-LM for all platforms contains a vulnerability in the megatron/training/
arguments.py component where an attacker could cause a code injection issue by providing a malicious input. A successful exploit of this vulnerability may lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Triton Inference Server for Linux contains a vulnerability where a user can set the logging location to an arbitrary file. If this file exists, logs are appended to the file. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Triton Inference Server for Linux contains a vulnerability in shared memory APIs, where a user can cause an improper memory access issue by a network API. A successful exploit of this vulnerability might lead to denial of service and data tampering. |
| NVIDIA Triton Inference Server for Linux contains a vulnerability in the tracing API, where a user can corrupt system files. A successful exploit of this vulnerability might lead to denial of service and data tampering. |
| NVIDIA HGX & DGX GB200, GB300, B300 contain a vulnerability in the HGX Management Controller (HMC) that may allow a malicious actor with administrative access on the BMC to access the HMC as an administrator. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
| The NVIDIA NVDebug tool contains a vulnerability that may allow an actor to run code on the platform host as a non-privileged user. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure and data tampering. |
| The NVIDIA NVDebug tool contains a vulnerability that may allow an actor to write files to restricted components. A successful exploit of this vulnerability may lead to information disclosure, denial of service, and data tampering. |