| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability in TeamViewer DEX Client (former 1E Client) - Content Distribution Service (NomadBranch.exe) prior version 25.11 for Windows allows malicious actors to coerce the service into transmitting data to an arbitrary internal IP address, potentially leaking sensitive information. |
| A vulnerability in TeamViewer DEX Client (former 1E client) - Content Distribution Service (NomadBranch.exe) prior version 25.11 for Windows allows malicious actors to bypass file integrity validation via a crafted request. By providing a valid hash for a malicious file, an attacker can cause the service to incorrectly validate and process the file as trusted, enabling arbitrary code execution under the Nomad Branch service context. |
| A vulnerability in TeamViewer DEX Client (former 1E Client) - Content Distribution Service (NomadBranch.exe) prior version 25.11 for Windows allows malicious actors to cause a denial of service (application crash) via a crafted command, resulting in service termination. |
| AdGuard DNS before 2.2 allows remote attackers to cause a denial of service via malformed UDP packets. |
| An issue was discovered in function d_abi_tags in file cp-demangle.c in BinUtils 2.26 allows attackers to cause a denial of service via crafted PE file. |
| An issue was discovered in function d_print_comp_inner in file cp-demangle.c in BinUtils 2.26 allows attackers to cause a denial of service via crafted PE file. |
| Multiple vulnerabilities in the Login Enhancements (Login Block) feature of Cisco IOS Software could allow an unauthenticated, remote attacker to trigger a reload of an affected system, resulting in a denial of service (DoS) condition. These vulnerabilities affect Cisco devices that are running Cisco IOS Software Release 15.4(2)T, 15.4(3)M, or 15.4(2)CG and later. Cisco Bug IDs: CSCuy32360, CSCuz60599. |
| In the Linux kernel, the following vulnerability has been resolved:
fbnic: Move phylink resume out of service_task and into open/close
The fbnic driver was presenting with the following locking assert coming
out of a PM resume:
[ 42.208116][ T164] RTNL: assertion failed at drivers/net/phy/phylink.c (2611)
[ 42.208492][ T164] WARNING: CPU: 1 PID: 164 at drivers/net/phy/phylink.c:2611 phylink_resume+0x190/0x1e0
[ 42.208872][ T164] Modules linked in:
[ 42.209140][ T164] CPU: 1 UID: 0 PID: 164 Comm: bash Not tainted 6.17.0-rc2-virtme #134 PREEMPT(full)
[ 42.209496][ T164] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-5.fc42 04/01/2014
[ 42.209861][ T164] RIP: 0010:phylink_resume+0x190/0x1e0
[ 42.210057][ T164] Code: 83 e5 01 0f 85 b0 fe ff ff c6 05 1c cd 3e 02 01 90 ba 33 0a 00 00 48 c7 c6 20 3a 1d a5 48 c7 c7 e0 3e 1d a5 e8 21 b8 90 fe 90 <0f> 0b 90 90 e9 86 fe ff ff e8 42 ea 1f ff e9 e2 fe ff ff 48 89 ef
[ 42.210708][ T164] RSP: 0018:ffffc90000affbd8 EFLAGS: 00010296
[ 42.210983][ T164] RAX: 0000000000000000 RBX: ffff8880078d8400 RCX: 0000000000000000
[ 42.211235][ T164] RDX: 0000000000000000 RSI: 1ffffffff4f10938 RDI: 0000000000000001
[ 42.211466][ T164] RBP: 0000000000000000 R08: ffffffffa2ae79ea R09: fffffbfff4b3eb84
[ 42.211707][ T164] R10: 0000000000000003 R11: 0000000000000000 R12: ffff888007ad8000
[ 42.211997][ T164] R13: 0000000000000002 R14: ffff888006a18800 R15: ffffffffa34c59e0
[ 42.212234][ T164] FS: 00007f0dc8e39740(0000) GS:ffff88808f51f000(0000) knlGS:0000000000000000
[ 42.212505][ T164] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 42.212704][ T164] CR2: 00007f0dc8e9fe10 CR3: 000000000b56d003 CR4: 0000000000772ef0
[ 42.213227][ T164] PKRU: 55555554
[ 42.213366][ T164] Call Trace:
[ 42.213483][ T164] <TASK>
[ 42.213565][ T164] __fbnic_pm_attach.isra.0+0x8e/0xa0
[ 42.213725][ T164] pci_reset_function+0x116/0x1d0
[ 42.213895][ T164] reset_store+0xa0/0x100
[ 42.214025][ T164] ? pci_dev_reset_attr_is_visible+0x50/0x50
[ 42.214221][ T164] ? sysfs_file_kobj+0xc1/0x1e0
[ 42.214374][ T164] ? sysfs_kf_write+0x65/0x160
[ 42.214526][ T164] kernfs_fop_write_iter+0x2f8/0x4c0
[ 42.214677][ T164] ? kernfs_vma_page_mkwrite+0x1f0/0x1f0
[ 42.214836][ T164] new_sync_write+0x308/0x6f0
[ 42.214987][ T164] ? __lock_acquire+0x34c/0x740
[ 42.215135][ T164] ? new_sync_read+0x6f0/0x6f0
[ 42.215288][ T164] ? lock_acquire.part.0+0xbc/0x260
[ 42.215440][ T164] ? ksys_write+0xff/0x200
[ 42.215590][ T164] ? perf_trace_sched_switch+0x6d0/0x6d0
[ 42.215742][ T164] vfs_write+0x65e/0xbb0
[ 42.215876][ T164] ksys_write+0xff/0x200
[ 42.215994][ T164] ? __ia32_sys_read+0xc0/0xc0
[ 42.216141][ T164] ? do_user_addr_fault+0x269/0x9f0
[ 42.216292][ T164] ? rcu_is_watching+0x15/0xd0
[ 42.216442][ T164] do_syscall_64+0xbb/0x360
[ 42.216591][ T164] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[ 42.216784][ T164] RIP: 0033:0x7f0dc8ea9986
A bit of digging showed that we were invoking the phylink_resume as a part
of the fbnic_up path when we were enabling the service task while not
holding the RTNL lock. We should be enabling this sooner as a part of the
ndo_open path and then just letting the service task come online later.
This will help to enforce the correct locking and brings the phylink
interface online at the same time as the network interface, instead of at a
later time.
I tested this on QEMU to verify this was working by putting the system to
sleep using "echo mem > /sys/power/state" to put the system to sleep in the
guest and then using the command "system_wakeup" in the QEMU monitor. |
| In the Linux kernel, the following vulnerability has been resolved:
trace/fgraph: Fix the warning caused by missing unregister notifier
This warning was triggered during testing on v6.16:
notifier callback ftrace_suspend_notifier_call already registered
WARNING: CPU: 2 PID: 86 at kernel/notifier.c:23 notifier_chain_register+0x44/0xb0
...
Call Trace:
<TASK>
blocking_notifier_chain_register+0x34/0x60
register_ftrace_graph+0x330/0x410
ftrace_profile_write+0x1e9/0x340
vfs_write+0xf8/0x420
? filp_flush+0x8a/0xa0
? filp_close+0x1f/0x30
? do_dup2+0xaf/0x160
ksys_write+0x65/0xe0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When writing to the function_profile_enabled interface, the notifier was
not unregistered after start_graph_tracing failed, causing a warning the
next time function_profile_enabled was written.
Fixed by adding unregister_pm_notifier in the exception path. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: always use READ_ONCE() to read ring provided buffer lengths
Since the buffers are mapped from userspace, it is prudent to use
READ_ONCE() to read the value into a local variable, and use that for
any other actions taken. Having a stable read of the buffer length
avoids worrying about it changing after checking, or being read multiple
times.
Similarly, the buffer may well change in between it being picked and
being committed. Ensure the looping for incremental ring buffer commit
stops if it hits a zero sized buffer, as no further progress can be made
at that point. |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: KVM: fix stack overrun when loading vlenb
The userspace load can put up to 2048 bits into an xlen bit stack
buffer. We want only xlen bits, so check the size beforehand. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: Fix Oops by 9.1 surround channel names
get_line_out_pfx() may trigger an Oops by overflowing the static array
with more than 8 channels. This was reported for MacBookPro 12,1 with
Cirrus codec.
As a workaround, extend for the 9.1 channels and also fix the
potential Oops by unifying the code paths accessing the same array
with the proper size check. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: xsk: Fix crash on regular rq reactivation
When the regular rq is reactivated after the XSK socket is closed
it could be reading stale cqes which eventually corrupts the rq.
This leads to no more traffic being received on the regular rq and a
crash on the next close or deactivation of the rq.
Kal Cuttler Conely reported this issue as a crash on the release
path when the xdpsock sample program is stopped (killed) and restarted
in sequence while traffic is running.
This patch flushes all cqes when during the rq flush. The cqe flushing
is done in the reset state of the rq. mlx5e_rq_to_ready code is moved
into the flush function to allow for this. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix mlx5_ib_get_hw_stats when used for device
Currently, when mlx5_ib_get_hw_stats() is used for device (port_num = 0),
there is a special handling in order to use the correct counters, but,
port_num is being passed down the stack without any change. Also, some
functions assume that port_num >=1. As a result, the following oops can
occur.
BUG: unable to handle page fault for address: ffff89510294f1a8
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP
CPU: 8 PID: 1382 Comm: devlink Tainted: G W 6.1.0-rc4_for_upstream_base_2022_11_10_16_12 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:_raw_spin_lock+0xc/0x20
Call Trace:
<TASK>
mlx5_ib_get_native_port_mdev+0x73/0xe0 [mlx5_ib]
do_get_hw_stats.constprop.0+0x109/0x160 [mlx5_ib]
mlx5_ib_get_hw_stats+0xad/0x180 [mlx5_ib]
ib_setup_device_attrs+0xf0/0x290 [ib_core]
ib_register_device+0x3bb/0x510 [ib_core]
? atomic_notifier_chain_register+0x67/0x80
__mlx5_ib_add+0x2b/0x80 [mlx5_ib]
mlx5r_probe+0xb8/0x150 [mlx5_ib]
? auxiliary_match_id+0x6a/0x90
auxiliary_bus_probe+0x3c/0x70
? driver_sysfs_add+0x6b/0x90
really_probe+0xcd/0x380
__driver_probe_device+0x80/0x170
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
? driver_allows_async_probing+0x60/0x60
? driver_allows_async_probing+0x60/0x60
bus_for_each_drv+0x7b/0xc0
__device_attach+0xbc/0x200
bus_probe_device+0x87/0xa0
device_add+0x404/0x940
? dev_set_name+0x53/0x70
__auxiliary_device_add+0x43/0x60
add_adev+0x99/0xe0 [mlx5_core]
mlx5_attach_device+0xc8/0x120 [mlx5_core]
mlx5_load_one_devl_locked+0xb2/0xe0 [mlx5_core]
devlink_reload+0x133/0x250
devlink_nl_cmd_reload+0x480/0x570
? devlink_nl_pre_doit+0x44/0x2b0
genl_family_rcv_msg_doit.isra.0+0xc2/0x110
genl_rcv_msg+0x180/0x2b0
? devlink_nl_cmd_region_read_dumpit+0x540/0x540
? devlink_reload+0x250/0x250
? devlink_put+0x50/0x50
? genl_family_rcv_msg_doit.isra.0+0x110/0x110
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1f6/0x2c0
netlink_sendmsg+0x237/0x490
sock_sendmsg+0x33/0x40
__sys_sendto+0x103/0x160
? handle_mm_fault+0x10e/0x290
? do_user_addr_fault+0x1c0/0x5f0
__x64_sys_sendto+0x25/0x30
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fix it by setting port_num to 1 in order to get device status and remove
unused variable. |
| In the Linux kernel, the following vulnerability has been resolved:
shmem: use ramfs_kill_sb() for kill_sb method of ramfs-based tmpfs
As the ramfs-based tmpfs uses ramfs_init_fs_context() for the
init_fs_context method, which allocates fc->s_fs_info, use ramfs_kill_sb()
to free it and avoid a memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: core: Fix device management cmd timeout flow
In the UFS error handling flow, the host will send a device management cmd
(NOP OUT) to the device for link recovery. If this cmd times out and
clearing the doorbell fails, ufshcd_wait_for_dev_cmd() will do nothing and
return. hba->dev_cmd.complete struct is not set to NULL.
When this happens, if cmd has been completed by device, then we will call
complete() in __ufshcd_transfer_req_compl(). Because the complete struct is
allocated on the stack, the following crash will occur:
ipanic_die+0x24/0x38 [mrdump]
die+0x344/0x748
arm64_notify_die+0x44/0x104
do_debug_exception+0x104/0x1e0
el1_dbg+0x38/0x54
el1_sync_handler+0x40/0x88
el1_sync+0x8c/0x140
queued_spin_lock_slowpath+0x2e4/0x3c0
__ufshcd_transfer_req_compl+0x3b0/0x1164
ufshcd_trc_handler+0x15c/0x308
ufshcd_host_reset_and_restore+0x54/0x260
ufshcd_reset_and_restore+0x28c/0x57c
ufshcd_err_handler+0xeb8/0x1b6c
process_one_work+0x288/0x964
worker_thread+0x4bc/0xc7c
kthread+0x15c/0x264
ret_from_fork+0x10/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4
The T241 platform suffers from the T241-FABRIC-4 erratum which causes
unexpected behavior in the GIC when multiple transactions are received
simultaneously from different sources. This hardware issue impacts
NVIDIA server platforms that use more than two T241 chips
interconnected. Each chip has support for 320 {E}SPIs.
This issue occurs when multiple packets from different GICs are
incorrectly interleaved at the target chip. The erratum text below
specifies exactly what can cause multiple transfer packets susceptible
to interleaving and GIC state corruption. GIC state corruption can
lead to a range of problems, including kernel panics, and unexpected
behavior.
>From the erratum text:
"In some cases, inter-socket AXI4 Stream packets with multiple
transfers, may be interleaved by the fabric when presented to ARM
Generic Interrupt Controller. GIC expects all transfers of a packet
to be delivered without any interleaving.
The following GICv3 commands may result in multiple transfer packets
over inter-socket AXI4 Stream interface:
- Register reads from GICD_I* and GICD_N*
- Register writes to 64-bit GICD registers other than GICD_IROUTERn*
- ITS command MOVALL
Multiple commands in GICv4+ utilize multiple transfer packets,
including VMOVP, VMOVI, VMAPP, and 64-bit register accesses."
This issue impacts system configurations with more than 2 sockets,
that require multi-transfer packets to be sent over inter-socket
AXI4 Stream interface between GIC instances on different sockets.
GICv4 cannot be supported. GICv3 SW model can only be supported
with the workaround. Single and Dual socket configurations are not
impacted by this issue and support GICv3 and GICv4."
Writing to the chip alias region of the GICD_In{E} registers except
GICD_ICENABLERn has an equivalent effect as writing to the global
distributor. The SPI interrupt deactivate path is not impacted by
the erratum.
To fix this problem, implement a workaround that ensures read accesses
to the GICD_In{E} registers are directed to the chip that owns the
SPI, and disable GICv4.x features. To simplify code changes, the
gic_configure_irq() function uses the same alias region for both read
and write operations to GICD_ICFGR. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/dpt: Treat the DPT BO as a framebuffer
Currently i915_gem_object_is_framebuffer() doesn't treat the
BO containing the framebuffer's DPT as a framebuffer itself.
This means eg. that the shrinker can evict the DPT BO while
leaving the actual FB BO bound, when the DPT is allocated
from regular shmem.
That causes an immediate oops during hibernate as we
try to rewrite the PTEs inside the already evicted
DPT obj.
TODO: presumably this might also be the reason for the
DPT related display faults under heavy memory pressure,
but I'm still not sure how that would happen as the object
should be pinned by intel_dpt_pin() while in active use by
the display engine...
(cherry picked from commit 779cb5ba64ec7df80675a956c9022929514f517a) |
| In the Linux kernel, the following vulnerability has been resolved:
net: dcb: choose correct policy to parse DCB_ATTR_BCN
The dcbnl_bcn_setcfg uses erroneous policy to parse tb[DCB_ATTR_BCN],
which is introduced in commit 859ee3c43812 ("DCB: Add support for DCB
BCN"). Please see the comment in below code
static int dcbnl_bcn_setcfg(...)
{
...
ret = nla_parse_nested_deprecated(..., dcbnl_pfc_up_nest, .. )
// !!! dcbnl_pfc_up_nest for attributes
// DCB_PFC_UP_ATTR_0 to DCB_PFC_UP_ATTR_ALL in enum dcbnl_pfc_up_attrs
...
for (i = DCB_BCN_ATTR_RP_0; i <= DCB_BCN_ATTR_RP_7; i++) {
// !!! DCB_BCN_ATTR_RP_0 to DCB_BCN_ATTR_RP_7 in enum dcbnl_bcn_attrs
...
value_byte = nla_get_u8(data[i]);
...
}
...
for (i = DCB_BCN_ATTR_BCNA_0; i <= DCB_BCN_ATTR_RI; i++) {
// !!! DCB_BCN_ATTR_BCNA_0 to DCB_BCN_ATTR_RI in enum dcbnl_bcn_attrs
...
value_int = nla_get_u32(data[i]);
...
}
...
}
That is, the nla_parse_nested_deprecated uses dcbnl_pfc_up_nest
attributes to parse nlattr defined in dcbnl_pfc_up_attrs. But the
following access code fetch each nlattr as dcbnl_bcn_attrs attributes.
By looking up the associated nla_policy for dcbnl_bcn_attrs. We can find
the beginning part of these two policies are "same".
static const struct nla_policy dcbnl_pfc_up_nest[...] = {
[DCB_PFC_UP_ATTR_0] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_1] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_2] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_3] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_4] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_5] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_6] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_7] = {.type = NLA_U8},
[DCB_PFC_UP_ATTR_ALL] = {.type = NLA_FLAG},
};
static const struct nla_policy dcbnl_bcn_nest[...] = {
[DCB_BCN_ATTR_RP_0] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_1] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_2] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_3] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_4] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_5] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_6] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_7] = {.type = NLA_U8},
[DCB_BCN_ATTR_RP_ALL] = {.type = NLA_FLAG},
// from here is somewhat different
[DCB_BCN_ATTR_BCNA_0] = {.type = NLA_U32},
...
[DCB_BCN_ATTR_ALL] = {.type = NLA_FLAG},
};
Therefore, the current code is buggy and this
nla_parse_nested_deprecated could overflow the dcbnl_pfc_up_nest and use
the adjacent nla_policy to parse attributes from DCB_BCN_ATTR_BCNA_0.
Hence use the correct policy dcbnl_bcn_nest to parse the nested
tb[DCB_ATTR_BCN] TLV. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6mr: Fix skb_under_panic in ip6mr_cache_report()
skbuff: skb_under_panic: text:ffffffff88771f69 len:56 put:-4
head:ffff88805f86a800 data:ffff887f5f86a850 tail:0x88 end:0x2c0 dev:pim6reg
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:192!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 2 PID: 22968 Comm: kworker/2:11 Not tainted 6.5.0-rc3-00044-g0a8db05b571a #236
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: ipv6_addrconf addrconf_dad_work
RIP: 0010:skb_panic+0x152/0x1d0
Call Trace:
<TASK>
skb_push+0xc4/0xe0
ip6mr_cache_report+0xd69/0x19b0
reg_vif_xmit+0x406/0x690
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
vlan_dev_hard_start_xmit+0x3ab/0x5c0
dev_hard_start_xmit+0x17e/0x6e0
__dev_queue_xmit+0x2d6a/0x3d20
neigh_connected_output+0x3ed/0x570
ip6_finish_output2+0x5b5/0x1950
ip6_finish_output+0x693/0x11c0
ip6_output+0x24b/0x880
NF_HOOK.constprop.0+0xfd/0x530
ndisc_send_skb+0x9db/0x1400
ndisc_send_rs+0x12a/0x6c0
addrconf_dad_completed+0x3c9/0xea0
addrconf_dad_work+0x849/0x1420
process_one_work+0xa22/0x16e0
worker_thread+0x679/0x10c0
ret_from_fork+0x28/0x60
ret_from_fork_asm+0x11/0x20
When setup a vlan device on dev pim6reg, DAD ns packet may sent on reg_vif_xmit().
reg_vif_xmit()
ip6mr_cache_report()
skb_push(skb, -skb_network_offset(pkt));//skb_network_offset(pkt) is 4
And skb_push declared as:
void *skb_push(struct sk_buff *skb, unsigned int len);
skb->data -= len;
//0xffff88805f86a84c - 0xfffffffc = 0xffff887f5f86a850
skb->data is set to 0xffff887f5f86a850, which is invalid mem addr, lead to skb_push() fails. |