| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix crash on racing fsync and size-extending write into prealloc
We have been seeing crashes on duplicate keys in
btrfs_set_item_key_safe():
BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2620!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs]
With the following stack trace:
#0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4)
#1 btrfs_drop_extents (fs/btrfs/file.c:411:4)
#2 log_one_extent (fs/btrfs/tree-log.c:4732:9)
#3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9)
#4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9)
#5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8)
#6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8)
#7 btrfs_sync_file (fs/btrfs/file.c:1933:8)
#8 vfs_fsync_range (fs/sync.c:188:9)
#9 vfs_fsync (fs/sync.c:202:9)
#10 do_fsync (fs/sync.c:212:9)
#11 __do_sys_fdatasync (fs/sync.c:225:9)
#12 __se_sys_fdatasync (fs/sync.c:223:1)
#13 __x64_sys_fdatasync (fs/sync.c:223:1)
#14 do_syscall_x64 (arch/x86/entry/common.c:52:14)
#15 do_syscall_64 (arch/x86/entry/common.c:83:7)
#16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121)
So we're logging a changed extent from fsync, which is splitting an
extent in the log tree. But this split part already exists in the tree,
triggering the BUG().
This is the state of the log tree at the time of the crash, dumped with
drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py)
to get more details than btrfs_print_leaf() gives us:
>>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"])
leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610
leaf 33439744 flags 0x100000000000000
fs uuid e5bd3946-400c-4223-8923-190ef1f18677
chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da
item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160
generation 7 transid 9 size 8192 nbytes 8473563889606862198
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 204 flags 0x10(PREALLOC)
atime 1716417703.220000000 (2024-05-22 15:41:43)
ctime 1716417704.983333333 (2024-05-22 15:41:44)
mtime 1716417704.983333333 (2024-05-22 15:41:44)
otime 17592186044416.000000000 (559444-03-08 01:40:16)
item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13
index 195 namelen 3 name: 193
item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37
location key (0 UNKNOWN.0 0) type XATTR
transid 7 data_len 1 name_len 6
name: user.a
data a
item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53
generation 9 type 1 (regular)
extent data disk byte 303144960 nr 12288
extent data offset 0 nr 4096 ram 12288
extent compression 0 (none)
item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 4096 nr 8192
item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53
generation 9 type 2 (prealloc)
prealloc data disk byte 303144960 nr 12288
prealloc data offset 8192 nr 4096
...
So the real problem happened earlier: notice that items 4 (4k-12k) and 5
(8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and
item 5 starts at i_size.
Here is the state of
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: prevent division by zero in blk_rq_stat_sum()
The expression dst->nr_samples + src->nr_samples may
have zero value on overflow. It is necessary to add
a check to avoid division by zero.
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
fbmon: prevent division by zero in fb_videomode_from_videomode()
The expression htotal * vtotal can have a zero value on
overflow. It is necessary to prevent division by zero like in
fb_var_to_videomode().
Found by Linux Verification Center (linuxtesting.org) with Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/PM: Drain runtime-idle callbacks before driver removal
A race condition between the .runtime_idle() callback and the .remove()
callback in the rtsx_pcr PCI driver leads to a kernel crash due to an
unhandled page fault [1].
The problem is that rtsx_pci_runtime_idle() is not expected to be running
after pm_runtime_get_sync() has been called, but the latter doesn't really
guarantee that. It only guarantees that the suspend and resume callbacks
will not be running when it returns.
However, if a .runtime_idle() callback is already running when
pm_runtime_get_sync() is called, the latter will notice that the runtime PM
status of the device is RPM_ACTIVE and it will return right away without
waiting for the former to complete. In fact, it cannot wait for
.runtime_idle() to complete because it may be called from that callback (it
arguably does not make much sense to do that, but it is not strictly
prohibited).
Thus in general, whoever is providing a .runtime_idle() callback needs
to protect it from running in parallel with whatever code runs after
pm_runtime_get_sync(). [Note that .runtime_idle() will not start after
pm_runtime_get_sync() has returned, but it may continue running then if it
has started earlier.]
One way to address that race condition is to call pm_runtime_barrier()
after pm_runtime_get_sync() (not before it, because a nonzero value of the
runtime PM usage counter is necessary to prevent runtime PM callbacks from
being invoked) to wait for the .runtime_idle() callback to complete should
it be running at that point. A suitable place for doing that is in
pci_device_remove() which calls pm_runtime_get_sync() before removing the
driver, so it may as well call pm_runtime_barrier() subsequently, which
will prevent the race in question from occurring, not just in the rtsx_pcr
driver, but in any PCI drivers providing .runtime_idle() callbacks. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau: lock the client object tree.
It appears the client object tree has no locking unless I've missed
something else. Fix races around adding/removing client objects,
mostly vram bar mappings.
4562.099306] general protection fault, probably for non-canonical address 0x6677ed422bceb80c: 0000 [#1] PREEMPT SMP PTI
[ 4562.099314] CPU: 2 PID: 23171 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27
[ 4562.099324] Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021
[ 4562.099330] RIP: 0010:nvkm_object_search+0x1d/0x70 [nouveau]
[ 4562.099503] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 48 89 f8 48 85 f6 74 39 48 8b 87 a0 00 00 00 48 85 c0 74 12 <48> 8b 48 f8 48 39 ce 73 15 48 8b 40 10 48 85 c0 75 ee 48 c7 c0 fe
[ 4562.099506] RSP: 0000:ffffa94cc420bbf8 EFLAGS: 00010206
[ 4562.099512] RAX: 6677ed422bceb814 RBX: ffff98108791f400 RCX: ffff9810f26b8f58
[ 4562.099517] RDX: 0000000000000000 RSI: ffff9810f26b9158 RDI: ffff98108791f400
[ 4562.099519] RBP: ffff9810f26b9158 R08: 0000000000000000 R09: 0000000000000000
[ 4562.099521] R10: ffffa94cc420bc48 R11: 0000000000000001 R12: ffff9810f02a7cc0
[ 4562.099526] R13: 0000000000000000 R14: 00000000000000ff R15: 0000000000000007
[ 4562.099528] FS: 00007f629c5017c0(0000) GS:ffff98142c700000(0000) knlGS:0000000000000000
[ 4562.099534] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4562.099536] CR2: 00007f629a882000 CR3: 000000017019e004 CR4: 00000000003706f0
[ 4562.099541] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4562.099542] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4562.099544] Call Trace:
[ 4562.099555] <TASK>
[ 4562.099573] ? die_addr+0x36/0x90
[ 4562.099583] ? exc_general_protection+0x246/0x4a0
[ 4562.099593] ? asm_exc_general_protection+0x26/0x30
[ 4562.099600] ? nvkm_object_search+0x1d/0x70 [nouveau]
[ 4562.099730] nvkm_ioctl+0xa1/0x250 [nouveau]
[ 4562.099861] nvif_object_map_handle+0xc8/0x180 [nouveau]
[ 4562.099986] nouveau_ttm_io_mem_reserve+0x122/0x270 [nouveau]
[ 4562.100156] ? dma_resv_test_signaled+0x26/0xb0
[ 4562.100163] ttm_bo_vm_fault_reserved+0x97/0x3c0 [ttm]
[ 4562.100182] ? __mutex_unlock_slowpath+0x2a/0x270
[ 4562.100189] nouveau_ttm_fault+0x69/0xb0 [nouveau]
[ 4562.100356] __do_fault+0x32/0x150
[ 4562.100362] do_fault+0x7c/0x560
[ 4562.100369] __handle_mm_fault+0x800/0xc10
[ 4562.100382] handle_mm_fault+0x17c/0x3e0
[ 4562.100388] do_user_addr_fault+0x208/0x860
[ 4562.100395] exc_page_fault+0x7f/0x200
[ 4562.100402] asm_exc_page_fault+0x26/0x30
[ 4562.100412] RIP: 0033:0x9b9870
[ 4562.100419] Code: 85 a8 f7 ff ff 8b 8d 80 f7 ff ff 89 08 e9 18 f2 ff ff 0f 1f 84 00 00 00 00 00 44 89 32 e9 90 fa ff ff 0f 1f 84 00 00 00 00 00 <44> 89 32 e9 f8 f1 ff ff 0f 1f 84 00 00 00 00 00 66 44 89 32 e9 e7
[ 4562.100422] RSP: 002b:00007fff9ba2dc70 EFLAGS: 00010246
[ 4562.100426] RAX: 0000000000000004 RBX: 000000000dd65e10 RCX: 000000fff0000000
[ 4562.100428] RDX: 00007f629a882000 RSI: 00007f629a882000 RDI: 0000000000000066
[ 4562.100432] RBP: 00007fff9ba2e570 R08: 0000000000000000 R09: 0000000123ddf000
[ 4562.100434] R10: 0000000000000001 R11: 0000000000000246 R12: 000000007fffffff
[ 4562.100436] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 4562.100446] </TASK>
[ 4562.100448] Modules linked in: nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink cmac bnep sunrpc iwlmvm intel_rapl_msr intel_rapl_common snd_sof_pci_intel_cnl x86_pkg_temp_thermal intel_powerclamp snd_sof_intel_hda_common mac80211 coretemp snd_soc_acpi_intel_match kvm_intel snd_soc_acpi snd_soc_hdac_hda snd_sof_pci snd_sof_xtensa_dsp snd_sof_intel_hda_mlink
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
quota: Fix potential NULL pointer dereference
Below race may cause NULL pointer dereference
P1 P2
dquot_free_inode quota_off
drop_dquot_ref
remove_dquot_ref
dquots = i_dquot(inode)
dquots = i_dquot(inode)
srcu_read_lock
dquots[cnt]) != NULL (1)
dquots[type] = NULL (2)
spin_lock(&dquots[cnt]->dq_dqb_lock) (3)
....
If dquot_free_inode(or other routines) checks inode's quota pointers (1)
before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer
dereference will be triggered.
So let's fix it by using a temporary pointer to avoid this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: do not wait in vain when unloading module
The module exit path has race between deleting all controllers and
freeing 'left over IDs'. To prevent double free a synchronization
between nvme_delete_ctrl and ida_destroy has been added by the initial
commit.
There is some logic around trying to prevent from hanging forever in
wait_for_completion, though it does not handling all cases. E.g.
blktests is able to reproduce the situation where the module unload
hangs forever.
If we completely rely on the cleanup code executed from the
nvme_delete_ctrl path, all IDs will be freed eventually. This makes
calling ida_destroy unnecessary. We only have to ensure that all
nvme_delete_ctrl code has been executed before we leave
nvme_fc_exit_module. This is done by flushing the nvme_delete_wq
workqueue.
While at it, remove the unused nvme_fc_wq workqueue too. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix race condition on enabling fast-xmit
fast-xmit must only be enabled after the sta has been uploaded to the driver,
otherwise it could end up passing the not-yet-uploaded sta via drv_tx calls
to the driver, leading to potential crashes because of uninitialized drv_priv
data.
Add a missing sta->uploaded check and re-check fast xmit after inserting a sta. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: savage: Error out if pixclock equals zero
The userspace program could pass any values to the driver through
ioctl() interface. If the driver doesn't check the value of pixclock,
it may cause divide-by-zero error.
Although pixclock is checked in savagefb_decode_var(), but it is not
checked properly in savagefb_probe(). Fix this by checking whether
pixclock is zero in the function savagefb_check_var() before
info->var.pixclock is used as the divisor.
This is similar to CVE-2022-3061 in i740fb which was fixed by
commit 15cf0b8. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: sis: Error out if pixclock equals zero
The userspace program could pass any values to the driver through
ioctl() interface. If the driver doesn't check the value of pixclock,
it may cause divide-by-zero error.
In sisfb_check_var(), var->pixclock is used as a divisor to caculate
drate before it is checked against zero. Fix this by checking it
at the beginning.
This is similar to CVE-2022-3061 in i740fb which was fixed by
commit 15cf0b8. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix IO hang from sbitmap wakeup race
In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered
with the following blk_mq_get_driver_tag() in case of getting driver
tag failure.
Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe
the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime
blk_mq_mark_tag_wait() can't get driver tag successfully.
This issue can be reproduced by running the following test in loop, and
fio hang can be observed in < 30min when running it on my test VM
in laptop.
modprobe -r scsi_debug
modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4
dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename`
fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \
--runtime=100 --numjobs=40 --time_based --name=test \
--ioengine=libaio
Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which
is just fine in case of running out of tag. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't abort filesystem when attempting to snapshot deleted subvolume
If the source file descriptor to the snapshot ioctl refers to a deleted
subvolume, we get the following abort:
BTRFS: Transaction aborted (error -2)
WARNING: CPU: 0 PID: 833 at fs/btrfs/transaction.c:1875 create_pending_snapshot+0x1040/0x1190 [btrfs]
Modules linked in: pata_acpi btrfs ata_piix libata scsi_mod virtio_net blake2b_generic xor net_failover virtio_rng failover scsi_common rng_core raid6_pq libcrc32c
CPU: 0 PID: 833 Comm: t_snapshot_dele Not tainted 6.7.0-rc6 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:create_pending_snapshot+0x1040/0x1190 [btrfs]
RSP: 0018:ffffa09c01337af8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff9982053e7c78 RCX: 0000000000000027
RDX: ffff99827dc20848 RSI: 0000000000000001 RDI: ffff99827dc20840
RBP: ffffa09c01337c00 R08: 0000000000000000 R09: ffffa09c01337998
R10: 0000000000000003 R11: ffffffffb96da248 R12: fffffffffffffffe
R13: ffff99820535bb28 R14: ffff99820b7bd000 R15: ffff99820381ea80
FS: 00007fe20aadabc0(0000) GS:ffff99827dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559a120b502f CR3: 00000000055b6000 CR4: 00000000000006f0
Call Trace:
<TASK>
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? __warn+0x81/0x130
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? report_bug+0x171/0x1a0
? handle_bug+0x3a/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? create_pending_snapshot+0x1040/0x1190 [btrfs]
create_pending_snapshots+0x92/0xc0 [btrfs]
btrfs_commit_transaction+0x66b/0xf40 [btrfs]
btrfs_mksubvol+0x301/0x4d0 [btrfs]
btrfs_mksnapshot+0x80/0xb0 [btrfs]
__btrfs_ioctl_snap_create+0x1c2/0x1d0 [btrfs]
btrfs_ioctl_snap_create_v2+0xc4/0x150 [btrfs]
btrfs_ioctl+0x8a6/0x2650 [btrfs]
? kmem_cache_free+0x22/0x340
? do_sys_openat2+0x97/0xe0
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x46/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7fe20abe83af
RSP: 002b:00007ffe6eff1360 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fe20abe83af
RDX: 00007ffe6eff23c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000000 R09: 00007fe20ad16cd0
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe6eff13c0 R14: 00007fe20ad45000 R15: 0000559a120b6d58
</TASK>
---[ end trace 0000000000000000 ]---
BTRFS: error (device vdc: state A) in create_pending_snapshot:1875: errno=-2 No such entry
BTRFS info (device vdc: state EA): forced readonly
BTRFS warning (device vdc: state EA): Skipping commit of aborted transaction.
BTRFS: error (device vdc: state EA) in cleanup_transaction:2055: errno=-2 No such entry
This happens because create_pending_snapshot() initializes the new root
item as a copy of the source root item. This includes the refs field,
which is 0 for a deleted subvolume. The call to btrfs_insert_root()
therefore inserts a root with refs == 0. btrfs_get_new_fs_root() then
finds the root and returns -ENOENT if refs == 0, which causes
create_pending_snapshot() to abort.
Fix it by checking the source root's refs before attempting the
snapshot, but after locking subvol_sem to avoid racing with deletion. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: sun6i: fix race between DMA RX transfer completion and RX FIFO drain
Previously the transfer complete IRQ immediately drained to RX FIFO to
read any data remaining in FIFO to the RX buffer. This behaviour is
correct when dealing with SPI in interrupt mode. However in DMA mode the
transfer complete interrupt still fires as soon as all bytes to be
transferred have been stored in the FIFO. At that point data in the FIFO
still needs to be picked up by the DMA engine. Thus the drain procedure
and DMA engine end up racing to read from RX FIFO, corrupting any data
read. Additionally the RX buffer pointer is never adjusted according to
DMA progress in DMA mode, thus calling the RX FIFO drain procedure in DMA
mode is a bug.
Fix corruptions in DMA RX mode by draining RX FIFO only in interrupt mode.
Also wait for completion of RX DMA when in DMA mode before returning to
ensure all data has been copied to the supplied memory buffer. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: logitech-hidpp: Fix kernel crash on receiver USB disconnect
hidpp_connect_event() has *four* time-of-check vs time-of-use (TOCTOU)
races when it races with itself.
hidpp_connect_event() primarily runs from a workqueue but it also runs
on probe() and if a "device-connected" packet is received by the hw
when the thread running hidpp_connect_event() from probe() is waiting on
the hw, then a second thread running hidpp_connect_event() will be
started from the workqueue.
This opens the following races (note the below code is simplified):
1. Retrieving + printing the protocol (harmless race):
if (!hidpp->protocol_major) {
hidpp_root_get_protocol_version()
hidpp->protocol_major = response.rap.params[0];
}
We can actually see this race hit in the dmesg in the abrt output
attached to rhbz#2227968:
[ 3064.624215] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
[ 3064.658184] logitech-hidpp-device 0003:046D:4071.0049: HID++ 4.5 device connected.
Testing with extra logging added has shown that after this the 2 threads
take turn grabbing the hw access mutex (send_mutex) so they ping-pong
through all the other TOCTOU cases managing to hit all of them:
2. Updating the name to the HIDPP name (harmless race):
if (hidpp->name == hdev->name) {
...
hidpp->name = new_name;
}
3. Initializing the power_supply class for the battery (problematic!):
hidpp_initialize_battery()
{
if (hidpp->battery.ps)
return 0;
probe_battery(); /* Blocks, threads take turns executing this */
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
}
4. Creating delayed input_device (potentially problematic):
if (hidpp->delayed_input)
return;
hidpp->delayed_input = hidpp_allocate_input(hdev);
The really big problem here is 3. Hitting the race leads to the following
sequence:
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
...
hidpp->battery.desc.properties =
devm_kmemdup(dev, hidpp_battery_props, cnt, GFP_KERNEL);
hidpp->battery.ps =
devm_power_supply_register(&hidpp->hid_dev->dev,
&hidpp->battery.desc, cfg);
So now we have registered 2 power supplies for the same battery,
which looks a bit weird from userspace's pov but this is not even
the really big problem.
Notice how:
1. This is all devm-maganaged
2. The hidpp->battery.desc struct is shared between the 2 power supplies
3. hidpp->battery.desc.properties points to the result from the second
devm_kmemdup()
This causes a use after free scenario on USB disconnect of the receiver:
1. The last registered power supply class device gets unregistered
2. The memory from the last devm_kmemdup() call gets freed,
hidpp->battery.desc.properties now points to freed memory
3. The first registered power supply class device gets unregistered,
this involves sending a remove uevent to userspace which invokes
power_supply_uevent() to fill the uevent data
4. power_supply_uevent() uses hidpp->battery.desc.properties which
now points to freed memory leading to backtraces like this one:
Sep 22 20:01:35 eric kernel: BUG: unable to handle page fault for address: ffffb2140e017f08
...
Sep 22 20:01:35 eric kernel: Workqueue: usb_hub_wq hub_event
Sep 22 20:01:35 eric kernel: RIP: 0010:power_supply_uevent+0xee/0x1d0
...
Sep 22 20:01:35 eric kernel: ? asm_exc_page_fault+0x26/0x30
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0xee/0x1d0
Sep 22 20:01:35 eric kernel: ? power_supply_uevent+0x10d/0x1d0
Sep 22 20:01:35 eric kernel: dev_uevent+0x10f/0x2d0
Sep 22 20:01:35 eric kernel: kobject_uevent_env+0x291/0x680
Sep 22 20:01:35 eric kernel:
---truncated--- |
| A path traversal vulnerability has been reported to affect several product versions. If a local attacker gains a user account, they can then exploit the vulnerability to read the contents of unexpected files or system data.
We have already fixed the vulnerability in the following versions:
Qfinder Pro Mac 7.13.0 and later
Qsync for Mac 5.1.5 and later
QVPN Device Client for Mac 2.2.8 and later |
| Time-of-check time-of-use (toctou) race condition in Microsoft Defender for Linux allows an authorized attacker to deny service locally. |
| Time-of-check time-of-use (toctou) race condition in Microsoft Graphics Component allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Graphics Component allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Management Services allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Connected Devices Platform Service allows an authorized attacker to elevate privileges locally. |