| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| 1. A cookie is set using the `secure` keyword for `https://target`
2. curl is redirected to or otherwise made to speak with `http://target` (same
hostname, but using clear text HTTP) using the same cookie set
3. The same cookie name is set - but with just a slash as path (`path=\"/\",`).
Since this site is not secure, the cookie *should* just be ignored.
4. A bug in the path comparison logic makes curl read outside a heap buffer
boundary
The bug either causes a crash or it potentially makes the comparison come to
the wrong conclusion and lets the clear-text site override the contents of the
secure cookie, contrary to expectations and depending on the memory contents
immediately following the single-byte allocation that holds the path.
The presumed and correct behavior would be to plainly ignore the second set of
the cookie since it was already set as secure on a secure host so overriding
it on an insecure host should not be okay. |
| curl's code for managing SSH connections when SFTP was done using the wolfSSH
powered backend was flawed and missed host verification mechanisms.
This prevents curl from detecting MITM attackers and more. |
| curl's websocket code did not update the 32 bit mask pattern for each new
outgoing frame as the specification says. Instead it used a fixed mask that
persisted and was used throughout the entire connection.
A predictable mask pattern allows for a malicious server to induce traffic
between the two communicating parties that could be interpreted by an involved
proxy (configured or transparent) as genuine, real, HTTP traffic with content
and thereby poison its cache. That cached poisoned content could then be
served to all users of that proxy. |
| When using `CURLOPT_PINNEDPUBLICKEY` option with libcurl or `--pinnedpubkey`
with the curl tool,curl should check the public key of the server certificate
to verify the peer.
This check was skipped in a certain condition that would then make curl allow
the connection without performing the proper check, thus not noticing a
possible impostor. To skip this check, the connection had to be done with QUIC
with ngtcp2 built to use GnuTLS and the user had to explicitly disable the
standard certificate verification. |
| When an OAuth2 bearer token is used for an HTTP(S) transfer, and that transfer
performs a cross-protocol redirect to a second URL that uses an IMAP, LDAP,
POP3 or SMTP scheme, curl might wrongly pass on the bearer token to the new
target host. |
| When doing TLS related transfers with reused easy or multi handles and
altering the `CURLSSLOPT_NO_PARTIALCHAIN` option, libcurl could accidentally
reuse a CA store cached in memory for which the partial chain option was
reversed. Contrary to the user's wishes and expectations. This could make
libcurl find and accept a trust chain that it otherwise would not. |
| When doing SSH-based transfers using either SCP or SFTP, and setting the
known_hosts file, libcurl could still mistakenly accept connecting to hosts
*not present* in the specified file if they were added as recognized in the
libssh *global* known_hosts file. |
| When doing SSH-based transfers using either SCP or SFTP, and asked to do
public key authentication, curl would wrongly still ask and authenticate using
a locally running SSH agent. |
| When saving HSTS data to an excessively long file name, curl could end up
removing all contents, making subsequent requests using that file unaware of
the HSTS status they should otherwise use. |
| When curl retrieves an HTTP response, it stores the incoming headers so that
they can be accessed later via the libcurl headers API.
However, curl did not have a limit in how many or how large headers it would
accept in a response, allowing a malicious server to stream an endless series
of headers and eventually cause curl to run out of heap memory. |
| This flaw allows an attacker to insert cookies at will into a running program
using libcurl, if the specific series of conditions are met.
libcurl performs transfers. In its API, an application creates "easy handles"
that are the individual handles for single transfers.
libcurl provides a function call that duplicates en easy handle called
[curl_easy_duphandle](https://curl.se/libcurl/c/curl_easy_duphandle.html).
If a transfer has cookies enabled when the handle is duplicated, the
cookie-enable state is also cloned - but without cloning the actual
cookies. If the source handle did not read any cookies from a specific file on
disk, the cloned version of the handle would instead store the file name as
`none` (using the four ASCII letters, no quotes).
Subsequent use of the cloned handle that does not explicitly set a source to
load cookies from would then inadvertently load cookies from a file named
`none` - if such a file exists and is readable in the current directory of the
program using libcurl. And if using the correct file format of course. |
| libcurl's ASN1 parser code has the `GTime2str()` function, used for parsing an
ASN.1 Generalized Time field. If given an syntactically incorrect field, the
parser might end up using -1 for the length of the *time fraction*, leading to
a `strlen()` getting performed on a pointer to a heap buffer area that is not
(purposely) null terminated.
This flaw most likely leads to a crash, but can also lead to heap contents
getting returned to the application when
[CURLINFO_CERTINFO](https://curl.se/libcurl/c/CURLINFO_CERTINFO.html) is used. |
| When curl is asked to use HSTS, the expiry time for a subdomain might
overwrite a parent domain's cache entry, making it end sooner or later than
otherwise intended.
This affects curl using applications that enable HSTS and use URLs with the
insecure `HTTP://` scheme and perform transfers with hosts like
`x.example.com` as well as `example.com` where the first host is a subdomain
of the second host.
(The HSTS cache either needs to have been populated manually or there needs to
have been previous HTTPS accesses done as the cache needs to have entries for
the domains involved to trigger this problem.)
When `x.example.com` responds with `Strict-Transport-Security:` headers, this
bug can make the subdomain's expiry timeout *bleed over* and get set for the
parent domain `example.com` in curl's HSTS cache.
The result of a triggered bug is that HTTP accesses to `example.com` get
converted to HTTPS for a different period of time than what was asked for by
the origin server. If `example.com` for example stops supporting HTTPS at its
expiry time, curl might then fail to access `http://example.com` until the
(wrongly set) timeout expires. This bug can also expire the parent's entry
*earlier*, thus making curl inadvertently switch back to insecure HTTP earlier
than otherwise intended. |
| When asked to both use a `.netrc` file for credentials and to follow HTTP
redirects, curl could leak the password used for the first host to the
followed-to host under certain circumstances.
This flaw only manifests itself if the netrc file has an entry that matches
the redirect target hostname but the entry either omits just the password or
omits both login and password. |
| This flaw makes curl overflow a heap based buffer in the SOCKS5 proxy
handshake.
When curl is asked to pass along the host name to the SOCKS5 proxy to allow
that to resolve the address instead of it getting done by curl itself, the
maximum length that host name can be is 255 bytes.
If the host name is detected to be longer, curl switches to local name
resolving and instead passes on the resolved address only. Due to this bug,
the local variable that means "let the host resolve the name" could get the
wrong value during a slow SOCKS5 handshake, and contrary to the intention,
copy the too long host name to the target buffer instead of copying just the
resolved address there.
The target buffer being a heap based buffer, and the host name coming from the
URL that curl has been told to operate with. |
| When an application tells libcurl it wants to allow HTTP/2 server push, and the amount of received headers for the push surpasses the maximum allowed limit (1000), libcurl aborts the server push. When aborting, libcurl inadvertently does not free all the previously allocated headers and instead leaks the memory. Further, this error condition fails silently and is therefore not easily detected by an application. |
| libcurl did not check the server certificate of TLS connections done to a host specified as an IP address, when built to use mbedTLS. libcurl would wrongly avoid using the set hostname function when the specified hostname was given as an IP address, therefore completely skipping the certificate check. This affects all uses of TLS protocols (HTTPS, FTPS, IMAPS, POPS3, SMTPS, etc). |
| When curl is told to use the Certificate Status Request TLS extension, often referred to as OCSP stapling, to verify that the server certificate is valid, it might fail to detect some OCSP problems and instead wrongly consider the response as fine. If the returned status reports another error than 'revoked' (like for example 'unauthorized') it is not treated as a bad certficate. |
| When a protocol selection parameter option disables all protocols without adding any then the default set of protocols would remain in the allowed set due to an error in the logic for removing protocols. The below command would perform a request to curl.se with a plaintext protocol which has been explicitly disabled. curl --proto -all,-http http://curl.se The flaw is only present if the set of selected protocols disables the entire set of available protocols, in itself a command with no practical use and therefore unlikely to be encountered in real situations. The curl security team has thus assessed this to be low severity bug. |
| libcurl skips the certificate verification for a QUIC connection under certain conditions, when built to use wolfSSL. If told to use an unknown/bad cipher or curve, the error path accidentally skips the verification and returns OK, thus ignoring any certificate problems. |